Note On The Crystal Structure of $\mathbf{R b N i F}_{3}$

D. BABEL
Laboratorium für Anorganische und Analytische Chemie der Universität Tübingen, Germany

Received July 13, 1970

In a previous paper on the structures of hexagonal fluoroperovskites (1) we have published our results on the crystal structure of RbNiF_{3} as derived from $h 0 l$ single crystal reflections. Because of the significant differences to the powder work results of Arnott and Longo (2) we have now redetermined the RbNiF_{3} structure using three-dimensional single crystal data.

In fact the use of two-dimensional data leads to a parameter interference which accounts for some of the differences mentioned above. In the structure
of $\mathrm{RbNiF}_{3}{ }^{1}$ the atoms $\mathrm{Rb}_{\mathbf{I}}$ and F_{1} coincide in the [010] projection almost completely and the same is true of the atoms $\mathrm{Rb}_{\text {II }}$ and F_{II}. Therefore an independent refinement of the positional parameters and the temperature factors of these atoms requires three-dimensional data (rather than $h 0 l$ reflections only), although there are only x and z parameters to refine.

In addition to the $49 h 0 l$ reflections from a preces${ }^{1}$ As for notation of atoms we refer to the work of Arnott and Longo (2).

TABLE I
Observed and Calculated Structure Factors for RbNiF_{3}

$h k l$	F_{0}	F_{c}	$h k l$	F_{0}	$F_{\text {c }}$	$h k l$	F_{0}	F_{c}
	53.49	31.51	5011	48.39	46.05	- $332^{\text {b }}$	5.46	8.57
006	139.79	154.82	5013	34.35	51.56	$422^{\text {b }}$	30.33	36.09
008	69.33	75.06	$600^{\text {a }}$	174.62	175.97	$512^{\text {b }}$	13.98	15.38
0012	177.63	203.08	$100^{\text {b }}$	2.32	0.80	$602^{\text {b }}$	3.99	2.73
0016	20.63	38.30	110	251.95	277.44	$432^{\text {b }}$	10.60	14.13
103^{a}	68.47	71.02	$200^{\text {b }}$	3.47	3.66	103	86.63	71.02
104^{a}	161.14	164.60	$210^{\text {b }}$	2.94	3.25	203	162.39	146.01
105^{a}	74.09	67.24	300	228.46	227.38	213	57.55	47.00
107	104.81	109.63	220	299.23	309.42	$303^{\text {b }}$	9.19	7.74
108	69.09	60.40	$310^{\text {b }}$	3.70	0.04	313	61.96	54.27
109	94.43	88.68	$400^{\text {b }}$	5.58	8.16	403	108.06	95.51
1011	86.59	85.58	$320^{\text {b }}$	4.11	2.36	323	68.42	57.39
1013	52.17	60.89	410	174.72	176.13	$413^{\text {b }}$	4.02	3.84
1016	89.62	98.58	$500^{\text {b }}$	5.76	7.50	$503^{\text {b }}$	44.05	36.89
201^{a}	32.19	26.55	330	161.21	160.38	423	79.28	7535
202^{a}	97.67	81.53	$420^{\text {b }}$	3.88	9.82	513	38.17	40.87
203^{a}	152.00	146.01	510	3.58	3.28	433	30.54	35.43
204	204.34	207.40	600	164.44	175.97	104	156.22	164.60
205	129.50	121.99	$430^{\text {b }}$	2.79	6.64	114	56.97	50.91
207	121.93	112.02	520	132.14	129.82	204	206.73	207.40
208	123.95	116.89	$101^{\text {b }}$	18.53	25.35	214	141.54	135.61
209	126.64	126.27		49.92	26.55	304	52.86	44.56
2010	36.23	45.22	$211^{\text {b }}$	2.94	5.34	$224^{\text {b }}$	40.23	32.05

TABLE I-continued

hkl	F_{0}	F_{c}	$h k l$	F_{0}	F_{c}	$h k l$	F_{0}	F_{c}
2011	44.93	37.35	$301^{\text {b }}$	18.26	12.04	314	121.57	117.46
2013	56.25	52.42	$311^{\text {b }}$	7.40	10.39	404	147.41	137.16
2016	98.66	100.60	$40{ }^{\text {b }}$	22.32	16.64	324	103.66	100.60
300^{4}	216.81	227.38	$321^{\text {b }}$	16.39	11.61	414	34.06	34.24
304	51.81	44.56	$411^{\text {b }}$	8.25	6.22	504	92.20	90.23
308	80.17	79.66	$501^{\text {b }}$	5.73	6.68	334^{6}	20.26	29.87
3012	123.01	116.78	421	20.56	14.22	424	103.95	103.62
3016	66.71	58.55	$511^{\text {n }}$	3.55	3.34	514	82.51	84.30
402°	41.06	47.47	$601^{\text {b }}$	4.14	0.60	604^{b}	25.84	28.47
$403^{\text {a }}$	95.97	95.51	$431^{\text {b }}$	11.07	7.18	434	73.41	74.95
404	150.20	137.16	521	9.63	6.74	105	73.41	67.24
405	86.01	80.28	$102^{\text {b }}$	2.35	4.69	205	124.80	121.99
407	92.02	85.81	$112^{\text {b }}$	3.17	9.62	215	76.35	66.76
408	101.83	78.64	202	103.36	81.53	$305^{\text {b }}$	9.13	10.80
409	100.70	94.29	$212^{\text {b }}$	5.93	2.93	315	53.44	49.95
4011	38.87	32.16	$302^{\text {b }}$	4.58	6.25	405	86.33	80.28
4013	45.87	46.50	$222^{\text {b }}$	5.08	3.94	325	38.76	38.85
4016	90.46	82.48	$312^{\text {b }}$	14.71	7.99	$415{ }^{\text {b }}$	3.76	5.94
504	106.04	90.23	$402^{\text {h }}$	44.63	47.47	505	53.15	46.86
507	64.33	76.54	$322^{\text {b }}$	8.13	7.71	425	54.32	59.07
508	34.52	38.06	$412^{\text {b }}$	4.08	7.20	515	38.17	38.10
509	62.05	50.75	$502^{\text {b }}$	11.31	11.47			

${ }^{n}$ Reflections once more measured on the [001] rotation photograph.
${ }^{0}$ Structure factors derived from estimated intensities, not used in refinement,

$$
R=\frac{\Sigma| | F_{0}\left|-\left|F_{c}\right|\right|}{\Sigma\left|F_{0}\right|}=0.077(89 \text { reflections } h k l)
$$

TABLE II
Positional Parameters, their Standard Deviations and Temperature
Factors of RbNiF_{3}

	x	${ }^{*} \times$	z	$\sigma_{\bar{z}}$	$R\left[\AA^{2}\right]$
$\mathrm{Rb}_{1}(2 b)$	0	-	0.25	-	0.51
$\mathrm{R} \mathrm{b}_{\mathrm{H}}(4 f)$	0.33333	-	$\begin{aligned} & 0.09535 \\ & {[0.09544]^{a}} \\ & (0.0954)^{b} \end{aligned}$	$\begin{gathered} 0.0005 \\ {[0.0007]} \end{gathered}$	0.22
$\mathrm{Ni}_{1}(2 a)$	0	-	0	-	1.02
$\mathrm{Ni}_{\text {II }}(4 f)$	0.33333	-	$\begin{gathered} 0.8443 \\ {[0.8450]} \\ (0.8462) \end{gathered}$	$\begin{gathered} 0.0007 \\ {[0.0008]} \end{gathered}$	0.57
$F_{1}(6 h)$	$\begin{aligned} & 0.515_{5} \\ & {\left[0.502_{3}\right]} \\ & (0.517) \end{aligned}$	$\begin{gathered} 0.0037 \\ {[0.0082]} \end{gathered}$	0.25	-	1.17
$\mathrm{F}_{\mathrm{HI}}(12 k)$	$\begin{aligned} & 0.835_{1} \\ & {\left[0.831_{3}\right]} \\ & (0.830) \end{aligned}$	$\begin{gathered} 0.0027 \\ {[0.0089]} \end{gathered}$	$\begin{gathered} 0.0742 \\ {[0.0740]} \\ (0.081) \end{gathered}$	$\begin{gathered} 0.0013 \\ {[0.0017]} \end{gathered}$	0.77

[^0]TABLE III
Some Interatomic Distances (\AA) in RbNiF_{3}

$\mathrm{Rb}_{\mathrm{I}}-6 \mathrm{~F}_{\mathrm{I}}$	$2.93(2.93)^{a}$	$\mathrm{~F}_{\mathrm{I}}-2 \mathrm{~F}_{\mathrm{I}}$	2.65	$(2.62)^{a}$
$\mathrm{Rb}_{\mathrm{I}}-6 \mathrm{~F}_{\mathrm{II}}$	$3.02(2.97)$	$\mathrm{F}_{\mathrm{I}}-2 \mathrm{~F}_{\mathrm{I}}$	3.19	(3.22)
$\mathrm{Rh}_{\mathrm{II}}-6 \mathrm{~F}_{\mathrm{II}}$	$2.94(2.93)$	$\mathrm{F}_{\mathrm{I}}-4 \mathrm{~F}_{\mathrm{II}}$	2.99	(2.89)
$\mathrm{Rb}_{\mathrm{II}}-3 \mathrm{~F}_{\mathrm{II}}$	$2.97(3.02)$	$\mathrm{F}_{\mathrm{II}}-2 \mathrm{~F}_{\mathrm{II}}$	2.95	(2.86)
$\mathrm{Rb}_{\mathrm{II}}-3 \mathrm{~F}_{\mathrm{I}}$	$2.88(2.89)$	$\mathrm{F}_{\mathrm{II}}-2 \mathrm{~F}_{\mathrm{II}}$	2.70	(2.89)
$\mathrm{Ni}_{\mathrm{I}}-6 \mathrm{~F}_{\mathrm{II}}$	$1.98(2.07)$	$\mathrm{F}_{\mathrm{II}}-2 \mathrm{~F}_{\mathrm{II}}$	2.89	(2.98)
$\mathrm{Ni}_{\mathrm{II}}-1 \mathrm{Ni}_{\mathrm{II}}$	$2.70(2.75)$	$\mathrm{F}_{\mathrm{II}}-2 \mathrm{~F}_{\mathrm{I}}$	2.99	(2.89)
$\mathrm{Ni}_{\mathrm{II}}-3 \mathrm{~F}_{\mathrm{II}}$	$2.04(2.05)$	$\mathrm{Rb}_{\mathrm{I}}-1 \mathrm{Ni}_{\mathrm{I}}$	$3.58=\boldsymbol{c / 4}$	
$\mathrm{Ni}_{\mathrm{II}}-3 \mathrm{~F}_{\mathrm{II}}$	$2.06(1.95)$	$\mathrm{Rb}_{\mathrm{II}}-1 \mathrm{Ni}_{\mathrm{II}}$	3.59	(3.57)

${ }^{\text {a }}$ Results of Arnott and Longo in parentheses. See Table III of Ref. (2).
sion photograph of our previous refinement 40 reflections $h k l(l=0-5)$ were measured on a [001] rotation photograph taken from the same crystal with CuK_{α} radiation. The structure factors of 45 further reflections, too weak to be measured, were derived from estimated intensities but not considered in the course of refinement. The data are collected in Table I, which also gives the calculated structure factors after five cycles of least-squares refinement. The resulting parameters are listed in Table II, and Table III summarizes some interatomic distances calculated from them.

As may be seen from Table II a significant change of more than the standard deviation given in our previous paper (l) occurs only in the x parameter of F_{1}. This change to the new value of $x_{T_{1}}=0.515$ removes the main discrepancy to the results of Arnott and Longo (2) and indeed leads to a contraction of the fluorine triangle between the two $\mathrm{Ni}_{\mathrm{II}}$ atoms with F-F distances of $2.65 \AA$, very close to the radii sum of $2.66 \AA$. The $\mathrm{Ni}_{I_{1}}-\mathrm{Ni}_{11}$ separation is also shortened to $2.70 \AA$; both results are in better agreement with the related structures of CsCoF_{3}, CsNiF_{3} (1), and CsMnF_{3} (3).

Another discrepancy to the work of Arnott and Longo is still maintained. As a consequence of their higher z -value of $\mathrm{F}_{\text {II }}$ they find $\mathrm{Ni}_{1}-\mathrm{F}_{\text {II }}$ and $\mathrm{Ni}_{\text {II }}-\mathrm{F}_{\text {II }}$ distances in the reverse order than we did and
still do now. Our new values are $\mathrm{Ni}_{\mathrm{I}}-\mathrm{F}_{\mathrm{II}}=1.98 \AA$ in the single octahedron instead of $2.07 \AA$ (2), and $\mathrm{Ni}_{\text {III }}-\mathrm{F}_{\text {II }}=2.06 \AA$ in the double group instead of $1.95 \AA$ (2). Only the other distances $\mathrm{Ni}_{11}-\mathrm{F}_{1}$ in this face sharing octahedra are in good agreement now, 2.04 and $2.05 \AA$, respectively. The only reason which may be in favour of our new results is the approximate equidistance $\mathrm{M}-\mathrm{F}$ in the $\mathrm{Ni}_{2} \mathrm{~F}_{9}$ group, also known from the $\mathrm{Mn}_{2} \mathrm{~F}_{9}$ group in CsMnF_{3} (3). But a still more reasonable set of distances would result, if we assume a z-parameter of $F_{I I}$ of about 0.077 , lying midway between the Arnott-Longo value and ours.

Acknowledgment

I gratefully acknowledge the help of Dr. John Longo who drew my attention to the discrepancy between our results prior to publication of his work.

References

I. D. Babel, Z. Anorg. Allg. Chem. 369, 117 (1969).
2. R. J. Arnott and J. M. Longo, J. Solid State Chem. 2, 416 (1970).
3. A. Zalkin, K. Lee and D. Templeton, J. Chem. Phys. 37, 697 (1962).

[^0]: ${ }^{a}$ Values in brackets [] refer to our previous paper (I).
 ${ }^{b}$ Values in parentheses () are those of Arnott and Longo (2). See Table I of (2).

